√在线天堂中文最新版网,97se亚洲综合色区,国产成人av免费网址,国产成人av在线影院无毒,成人做爰100部片

×

conditional distribution造句

"conditional distribution"是什么意思   

例句與造句

  1. A belief network is a probability model defined on an acyclic directed graph ; distributed means nodes can be on different hosts , and heterogeneous means allowing different conditional distributions
    一個(gè)信念網(wǎng)絡(luò)是定義在一個(gè)非循環(huán)有向圖上的概率模型;分布性指節(jié)點(diǎn)可以在不同的主機(jī)上,異質(zhì)性指可以允許不同的條件分布。
  2. A comparison is made between the two results led by two mathematical theories which are the conditional distribution theory and the principal component analysis based on actual data
    摘要根據(jù)實(shí)測(cè)樣本數(shù)據(jù),對(duì)選擇基本部位采用的條件分布理論和主成分分析兩種數(shù)學(xué)理論進(jìn)行對(duì)比研究,結(jié)果表明:兩種方法選擇的基本部位有差異,但在最終應(yīng)用上差異不是很大。
  3. Because the relation of failure rate and conditional failure rate is similar to the relation of distribution and conditional distribution , condition failure rate function has visual meanings and is e - asily obtained
    由于條件失效率如同失效率一樣,也有很好的直觀意義且易獲得。由此前人開創(chuàng)了通過所定義的兩類條件失效率去刻畫二個(gè)相依部件的二維壽命分布。
  4. The empirical results show that evident heterogeneity exists not only in labor supply selectivity but also in rates of return of worker ' s characteristics across the conditional distribution of wages
    實(shí)證結(jié)果顯示,勞動(dòng)參與選擇性以及勞工特性的報(bào)酬率在工資的條件分配中呈現(xiàn)明顯的異質(zhì)性,而由此推估的性別歧視比例也隨著工資高低而改變,其中以低技術(shù)層次女性受到的歧視程度最為嚴(yán)重。
  5. Define a random route , which pass through all the grid node , on the condition of given n conditional datum , get a value on the first grid node from the conditional distribution of stochastic variable , add the new value into the conditional datum as a new conditional data . on the condition of current n + 1 conditional datum , get a new value from conditional distribution of stochastic variable on the next node again . then continue until all the nodes gets own value
    定義一個(gè)經(jīng)過所有網(wǎng)格節(jié)點(diǎn)的隨機(jī)路徑,在給定n個(gè)條件數(shù)據(jù)的情況下,在第一個(gè)網(wǎng)格節(jié)點(diǎn)處從隨機(jī)變量的條件分布中抽取一個(gè)值,將這個(gè)新值加入到條件數(shù)據(jù)集中,在給定的n + 1個(gè)條件數(shù)據(jù)的情況下,在節(jié)點(diǎn)處從隨機(jī)變量的條件分布中抽取一個(gè)值,重新進(jìn)行,直到所有節(jié)點(diǎn)被模擬完為止。
  6. It's difficult to find conditional distribution in a sentence. 用conditional distribution造句挺難的
  7. Here we developed the general arma ( p , q ) - garch ( r , s ) - m ( k ) models , which maybe become increasingly important for estimating volatility returns and exogenous shocks for finance data . after we present the posterior distribution of the model and the full conditional distributions of all the parameters of the model , we develop a hybrid metropolis - hastings algorithm for estimating the parameters of arma - garch - m models based on the works of bayesian chib and greenberg ( 1994 ) and nakatsuma ( 2000 ) . here we simplified the estimations in ma and garch block
    作為該模型的推廣,我們?cè)诒疚闹刑岢隽艘粋€(gè)一般的arma ( p , q ) - garch ( r , s ) - m ( k )模型,并在詳細(xì)給出模型的后驗(yàn)分布以及模型的所有參數(shù)的滿條件分布的基礎(chǔ)上,結(jié)合chibandgreenberg ( 1994 )與nakatsuma ( 2000 )等人的工作,對(duì)此新模型設(shè)計(jì)了一個(gè)可行的混合metropolis - hastings算法,簡化了ma塊與garch塊的估計(jì)。
  8. In the second chapter , we explicate the theoretical knowledge , bayes statistic approach , which be applied in the paper , we show the definition of the prior distribution and how to select the prior information , we show the relation of prior distribution , conditional distribution and posterior distribution , we also show statistical inference approach and the key of how to use bayes statistic approach
    第二部分內(nèi)容是本文應(yīng)用理論知識(shí)的簡要闡述,介紹了貝葉斯統(tǒng)計(jì)方法的理論,分別說明了先驗(yàn)信息的定義及如何獲取,后驗(yàn)分布、條件分布和先驗(yàn)分布三者關(guān)系,統(tǒng)計(jì)推斷方法及貝葉斯統(tǒng)計(jì)方法應(yīng)用的關(guān)鍵。第三部分內(nèi)容是對(duì)坦克射擊學(xué)中外彈道學(xué)的修正理論作了簡要的介紹。

相鄰詞匯

  1. "conditional density function"造句
  2. "conditional dependence"造句
  3. "conditional discharge"造句
  4. "conditional discharges"造句
  5. "conditional dismissal"造句
  6. "conditional distribution function"造句
  7. "conditional endorsement"造句
  8. "conditional entropy"造句
  9. "conditional equation"造句
桌面版繁體版English日本語

Copyright ? 2025 WordTech Co.